SYSTAP, LLC

RDF
Graphs
Graph Databases
Graph Analytics on GPUs

Overview

- Introduction.
 - Who we are and what we do.
- What are graph query and graph mining?
 - Selective indices versus full visitation.
 - Memory bandwidth, \$/GTEPS.
 - Implications for system design.
- GPU-accelerated Graph Mining
 - Challenges of ultra high throughput for graph mining on GPUs.
- RDF Graph Mining with SPARQL and vertex programs
- Link Attributes, Key-Value Stores, Property Graphs, RDF, RDR
 - Key value stores as materialized property sets for vertex.
 - Why link attributes are important
 - Fast and efficient representation of link attributes.
 - Stacking of fast world key value stores over graph databases for fast query.

SYSTAP, LLC

Small Business, Founded 2006

100% Employee Owned

Graph Database

- High performance, Scalable
 - 50B edges/node
 - High level query language
 - Efficient Graph Traversal
 - High 9s solution
- Open Source (Subscriptions)
 - Autodesk, EMC, market data, genomics and personalized medicine, etc.

GPU Analytics

- Extreme Performance
 - 5-100x faster than graphlab
 - 10,000x faster than graphdbs
- DARPA funding
- Disruptive technology
 - Early adopters
 - Huge ROIs
- Open Source

Embedded, Single Server, HA, Scale-out

Embedded, Single Server, HA, Scale-out

Embedded, Single Server, HA, Scale-out

And now on GPUs

Related "Graph" Technologies

Redpoint repositions existing technology.

MPGraph compares favorably with high end hardware solutions from YARC, Oracle, and SAP, but is open source and uses commodity hardware.

Similar models, different problems

- Graph query and graph analytics (traversal/mining)
 - Related data models
 - Very different computational requirements
- Many technologies are a bad match or limited solution
 - Key-value stores (bigtable, Accumulo, Cassandra, HBase)
 - Map-reduce
- Anti-pattern
 - Dump all data into "big bucket"

Similar models, different problems

- Graph query and graph analytics (traversal/mining)
 - Related data models
 - Very different computational requirements
- Many technologies are a bad match or limited solution
 - Key-value stores (bigtable, Accumulo, Cassandra, HBase)
 - Map-reduce
- Anti-pattern
 - Dump all data into "big bucket"

Storage and computation patterns must be correctly matched for high performance.

Bandwidth (2014 - Kepler)

- Data intensive problems are bandwidth constrained.
- GPUs have significantly more bandwidth.
- Severe bottlenecks: PCIe, network, disk.
 - Plots are the same data: Linear on the left. Log on the right.

Bandwidth (2016 - Pascal)

- GPU bandwidth is increasing
 - Constant bandwidth/byte.
 - Increasing memory density (6G => 24G).
- NVLINK exceeds CPU memory bandwidth.
 - 60 GB/s to 144 GB/s, depending on OEM configuration.

Bandwidth for Various Interfaces

Optimize for the right problem

- Historical scale-out architectures are embarrassingly parallel.
 - This is not true for graphs.
- Wide-spread habit to using map/reduce and key-value stores for graphs.
 - This is a bad reflex.
- Map/Reduce
 - Research is warped by dealing with the overhead of the paradigm.
- Key-value stores
 - Do not expose the necessary capabilities for query
 - Do not organize the edges correctly for traversal

Optimize for the right problem

Graph Query

- Declarative Query Language (SPARQL)
 - Query optimization is critical for performance.
- Index Locality (1D partitioning, multiple indices)
 - Get everything about a subject on one page of the index.
- Scale-out must flow queries over the data
 - Otherwise slams the network and the client (e.g., RYA can not scale).
- Must order and constrain joins to read as little data as possible
 - As-bound vectored nested index joins (bigdata)
 - Sideways information passing and merge joins (RDF3X)

Covering Indices (Quads)

Vectored Query in Scale-Out

Optimize for the right problem

- Storage and computation patterns must be correctly matched for high performance.
- Graph analytics:
 - Parallelism work must be distributed and balanced.
 - Memory bandwidth memory, not disk, is the bottleneck
 - 2D partitioning O(N) communications pattern (versus O(N*N))
 - 1D design looses locality when updating link weights for reverse indices.

Accelerated Graph Analytics

Fast Estimations of Traversals

- "Fast and Accurate Estimation of Shortest Paths in Large Graphs,"
 Gubichev et al., 2010.
 - 193-4000 ms (TreeSketch) on graphs with up to 48M edges.
 - Run times on the order of 50-100ms with hot cache (unpublished).
 - Running time for Dijkstra is 4-119s on the same graphs (exact method).
 - The Orkut data set has 223M edges and 2700ms runtime. This graph might not fit into the 6G on a K20, but would fit into a 12G K40 (untested).
- "On the Embeddability of Random Walk Distances," X. Zhao et al, 2014.
 - Random walks on graphs with up to 1.6M edges in 80ms.
- A GPU has comparable or better performance with exact results.
 - BFS on 89M edges of a power-law graph is 47ms (MPGraph).
 - Do exact results matter? They could for cell-level security on graphs.

Graph Processing

GPUs

Graphs

and

Graph Data Mining

GPU Graph Processing

- Motivation speed
 - 3 out of the top 5 super computers are GPU clusters
 - 3.3 B traversed edges per second (one GPU : Merrill, 2011)
 - 8.3 B traversed edges per second (quad GPU configuration : ibid)
- Goal
 - Blindingly fast SPARQL query and graph traversal on GPU clusters
 - 20 minutes on Accumulo => 27 milliseconds on a GPU.
- Open source
 - Deploy in workstations, HPC clusters, EC2, or your own data center

NVIDIA Roadmap

NVIDIA Pascal (2016,Q1)

GPUs – A Game Changer for Graph Analytics?

- Graphs are everywhere in data, also a powerful data model for federation
- GPUs may be the technology that finally delivers real-time analytics on large graphs
 - 10x speedup over CPU
 - 10x DRAM bandwidth
- This is a hard problem
 - Data dependent parallelism
 - Non-locality
 - PCIe bus is bottleneck
- Significant speed up over CPU on BFS
 - 3 billion edges per second on one GPU (see chart).
- Roadmap
 - GPU accelerated vertex-centric graph mining platform.
 - GPU accelerated graph query

MPGraph

- High-level graph processing framework
 - High programmability

GPU architecture

Optimization techniques

CUDA

High performance

Comparable to low-level approach

MPGraph

- High-level graph processing framework
 - High programmability

GPU architecture
Optimization techniques
CUDA

High performance

Comparable to low-level approach

Think Like a Vertex

Simple APIs

```
pageRank(Message m) {
   total = m.value();
   vertex.val = .15 * .85 + total;
   for(nbr : out_neighbors) {
       SendMsg(nbr, vertex.val/num_out_nbrs);
   }
}
```

Lots of algorithms

- Betweenness-Centrality, Personalized Page Rank, k-means clustering,
 Loopy Belief Propagation, Graph search (crisp and approximate), etc.
- Lots of platforms
 - Pregel, Sedge, Signal/Collect, graphlab, PowerGraph, Apache Griaph,
 Apache Hama, GoldenOrb, Knowledge Discovery Kit, etc.

GAS – a Graph-Parallel Abstraction

- Graph-Parallel Vertex-Centric API ala GraphLab
- "Think like a vertex"
- **G**ather: collect information about my neighborhood
- Apply: update my value
- Scatter: signal adjacent vertices
- Can write all sorts of graph algorithms this way
 - BFS, PageRank, Connected Component, Triangle Counting, Max Flow, etc.

Gather

Example: BFS Implementation

BFS is just a Scatter operation (also true for SSSP).

Data	VertexType	int[] d_label	// vertex depth
Scatter	expandOverEdges() expand_vertex()	OUT_EDGES true	// always expand
	expand_edge()	frontier = neighbor_id	· · · · · · · · · · · · · · · · · · ·
	contract()	<pre>int label = d_label[vert if (label != -1) { vertex_id = -1; } else { d_label[vertex_id] = i }</pre>	// already labeled? // de-activate // label & schedule

Example: PageRank Implementation

PageRank uses all three phases.

User Data	VertexType	-	age rank for vertex of out edges for vertex
Gather	gatherEdges() gather_edge() gather_sum()	IN_EDGES d_rank[neighbor_id] / d_not left + right	ut[neighbor_id] // binary sum
Apply	apply()	float oldval = d_rank[vertex_float newval = 0.85f * gather changed = fabs(oldval - nev d_rank[vertex_id] = newval;	rvalue + 0.15f; vval) >= 0.01f;
Scatter	expandEdges() expand_vertex() expand_edge()	OUT_EDGES Changed frontier = neighbor_id	// expand iff changed // visit neighbor

BFS Results: MPGraph vs GraphLab

MPGraph Speedup vs GraphLab (BFS)

PageRank: MPGraph vs GraphLab

MPGraph Speedup vs GraphLab (PR)

Graph Mining on GPU Clusters

- 2D partitioning (aka vertex cuts)
- Minimizes the communication volume.
- Batch parallel Gather in row, Scatter in column.

Graph Processing

RDF SPARQL GPUs

Ideal Approach

- RUN {vertex-program}
 - FROM data source(s)
 - SELECT vertex projection
 - WHERE graph-pattern(s)
- Declarative query extracts data of interest
- Data dynamically partitioned onto cluster
- Vertex program runs over that data.
- It should be that easy.

Graph Mining using SPARQL

- Gather Apply Scatter (GAS) model for RDF graphs
 - Can specify restrictions on the link types visited.
 - Efficient parallel execution on the server (no round trips)
- GAS Algorithms implemented using simple Java API
 - BFS, SSSP, CC, PageRank, etc.
 - Easy to write more algorithms:
 - http://wiki.bigdata.com/wiki/index.php/RDF GAS API
- Graph algorithms are trivially combined with SPARQL
 - "SERVICE" abstraction for GAS algorithm execution.
 - Will support execution against GPU soon.

SPARQL Graph Traversal (BFS)

```
PREFIX gas: <a href="http://www.bigdata.com/rdf/gas#">http://www.bigdata.com/rdf/gas#>
SELECT ?depth (count(?out) as ?cnt) {
 SERVICE gas:service {
   gas:program gas:gasClass "com.bigdata.rdf.graph.analytics.BFS".
   gas:program gas:in <http://www.w3.org/People/Berners-Lee/card#i> . # one or more times.
   gas:program gas:out ?out . # exactly once - will be bound to the visited vertices.
  gas:program gas:out1 ?depth . # exactly once - will be bound to the depth of the visited vertices.
group by ?depth
                                                         100000
order by ?depth
                                                          10000
                                                           1000
# Query is ~ 325 ms on about 306,805 edges
```

Frontier Size against Traversal Depth

Query runs against bigdata (NOT MPGraph).

SPARQL Graph Traversal (BFS)

```
PREFIX gas: <a href="http://www.bigdata.com/rdf/gas#">http://www.bigdata.com/rdf/gas#>
PREFIX foaf: <a href="http://xmlns.com/foaf/0.1/">http://xmlns.com/foaf/0.1/>
SELECT ?depth (count(?out) as ?cnt) {
 SERVICE gas:service {
   gas:program gas:gasClass "com.bigdata.rdf.graph.analytics.BFS".
   gas:program gas:in <http://www.w3.org/People/Berners-Lee/card#i> . # one or more times.
   gas:program gas:out ?out . # exactly once - will be bound to the visited vertices.
   gas:program gas:out1 ?depth . # exactly once - will be bound to the depth of the visited vertices.
   gas:program gas:linkType foaf:knows. # optional restriction on the type of traversed links.
                                                                         10000
group by ?depth
order by ?depth
```

Frontier Size against Traversal Depth

Query is ~ 120 ms on about 306,805 edges

Query runs against bigdata (NOT MPGraph).

Graph Traversal - Predecessor

```
PREFIX gas: <a href="http://www.bigdata.com/rdf/gas#">http://www.bigdata.com/rdf/gas#>
SELECT ?depth ?out ?predecessor {
 SERVICE gas:service {
   gas:program gas:gasClass "com.bigdata.rdf.graph.analytics.BFS".
   gas:program gas:in <a href="http://www.w3.org/People/Berners-Lee/card#i">http://www.w3.org/People/Berners-Lee/card#i</a> . # one or more times.
   gas:program gas:target <a href="http://www.w3.org/People/all#eric">http://www.w3.org/People/all#eric</a>. # only paths to this vertex.
   gas:program gas:out ?out . # exactly once - will be bound to the visited vertices.
   gas:program gas:out1 ?depth . # exactly once - will be bound to the depth of the visited vertices.
   gas:program gas:out2 ?predecessor . # exactly once - will be bound to the predecessor.
order by ?depth
                                                                                               [unbound]
                                                                                     0
                                                                                               http://www.w3.org/People/Berners-Lee/card#i
# Query is ~ 250 ms on about 306,805 edges.
                                                                                               http://www.ivan-herman.net/foaf.rdf#me
                                                                                      2
# Query runs against bigdata (NOT MPGraph).
                                                                                               http://semanticweb.org/id/Ivan Herman
                                                                                               http://www.ivan-herman.net/me
                                                                                               http://www.ivan-herman.net/foaf
# Query provides a minimum hop path to target.
                                                                                               http://www.ivan-herman.net/foaf#me
                                                                                     7
                                                                                               http://www.w3.org/2001/sw/#activity
                                                                                               t175704
                                                                                      9
                                                                                               t175706
```

Graph Traversal – Extract Subgraph

```
PREFIX gas: <a href="http://www.bigdata.com/rdf/gas#">http://www.bigdata.com/rdf/gas#>
PREFIX foaf: <a href="http://xmlns.com/foaf/0.1/">http://xmlns.com/foaf/0.1/>
SELECT ?depth ?out ?p ?o {
    SERVICE gas:service {
        gas:program gas:gasClass "com.bigdata.rdf.graph.analytics.BFS" .
        gas:program gas:in <a href="http://www.w3.org/People/Berners-Lee/card#">http://www.w3.org/People/Berners-Lee/card#</a> . # one or more times.
        gas:program gas:out ?out . # exactly once - will be bound to the visited vertices.
        gas:program gas:out1 ?depth . # exactly once - will be bound to the depth of the visited vertices.
        gas:program gas:maxIterations 4 . # optional limit on breadth first expansion.
        gas:program gas:linkType foaf:knows . # optional restriction on the type of traversed links.
}

**Pout ?p ?o . # extract all links and vertex attributes for the visited vertices.
}

#*Query is ~ 940 ms on about 306,805 edges and extracts 77,883 statements.
#*Query runs against bigdata (NOT MPGraph).
```

Query extracts all "edges" for "vertices" touched by an N-hop BFS traversal.

Fun with Database Schema

RDF, Reification Done Right (RDR), Key-Value Stores (Accumulo), Security, and Bi-Temporal data

Goal is to unify approaches

- My goal here is to point out that
 - (a) Link attributes are very useful; and
 - (b) We can unify a wide variety of approaches.
- Each of these approaches has its reasons and its weaknesses.
- Eventually, we should be able to interoperate efficiently access these models.

Key				
RowID	Column		Timestamp	Value
	Family	Qualifier	Visibility	Timestamp

RDF Data Model

RDF Data Model

Property Graph Model

Property Graph Model

Property Graph Model

Reification Done Right

RDF Graphs with efficient link attributes

Statement Level Metadata

Important to know where data came from in a mashup

- :mike :memberOf :SYSTAP .
- source dc:source http://www.systap.com.

But you CAN NOT say that in RDF.

RDF "Reification"

Creates a "model" of the statement:

```
:s1 rdf:subject :mike .
:s1 rdf:predicate :memberOf .
:s1 rdf:object :SYSTAP .
:s1 rdf:type rdf:Statement .
```

Then you can say:

```
:s1 dc:source <http://www.systap.com> .
```

Reification Done Right

- Outcome from Dagstuhl 2012 Semantic Data Management workshop.
 - Collaborative effort with SYSTAP, Open Link, Humboldt University, Karlsruhe Institute of Technology.
- Harmonized with RDF model theory & SPARQL algebra.
 - Olaf Hartig, "Specification of a Reification Extension for SPARQL" - http://www.bigdata.com/whitepapers/reifSPARQL.pdf
 - Extensions for N3, TURTLE, and SPARQL are proposed.

Works with triples or quads

• *Inline* statements into statements.

Same syntax works for query

```
select ?s ?o ?source where {
     << ?s :memberOf ?o >> dc:source ?source .
}
```

RDR Use Cases

- Uniform approach for:
 - Time series data
 - Datum level security models
 - Link attributes (we've already seen this)
 - Bi-temporal systems (backup slides)
- Subsumes the blueprints model
 - Blueprints attributes are simple objects.
 - Attribute cardinality must be zero or one.
 - Does not allow links about links (aka statements about statements).
- Database free to choose efficient physical schema:
 - Reified statement models are an option, not a necessity.
 - Inline statements into statements (variable length identifiers).
 - Rotate link attributes into a null-able columns.

Basic Triple Table Schema

Subject	Predicate	Object
:widget1	:hasColor	:red
:widget1	:hasColor	:green

Primary Key

Time series data (key-value stores)

Subject	Predicate	Object	timestamp
:widget1	:hasColor	:red	t1
:widget1	:hasColor	:green	t12

Primary Key

```
<<:widget1, :hasColor, :red>> :timestamp :t1 . <<:widget2, :hasColor, :green>> :timestamp :t12 .
```

- The "timestamp" column is Statements about Statements.
 - This is NOT a wide table for the properties of a subject.
- The timestamp part of primary key for key-value stores.
 - How do we express this cardinality constraint?

Cell-Level Security (Accumulo)

Subject	Predicate	Object	timestamp	Visibility
:widget1	:hasColor	:red	t1	Public
:widget2	:hasColor	:green	t12	Private

Primary Key

Cell level Security

```
<<:widget1, :hasColor, :red>> :visibility :Public . <<:widget2, :hasColor, :green>> :visibility :Private .
```

Security is Statements about Statements.

Bi-Temporal Data

```
<<:widget1, :hasColor, :red>>
    :businessStartTime "2013-01-01T00:00:00"^^<xsd:#dateTime> ;
    :businessStopTime "2013-04-01T00:00:00"^^<xsd:#dateTime> ;
    :transactionTime "2012-11-14T15:10:22"^^<xsd:#dateTime> .
<<:widget1, :hasColor, :green>>
    :businessStartTime "2013-04-01T00:00:00"^^<xsd:#dateTime> ;
    :businessStopTime "2013-07-01T00:00:00"^^<xsd:#dateTime> ;
    :transactionTime "2012-11-14T15:10:22"^^<xsd:#dateTime> .
```

Bi-Temporal Data

Subject	Predicate	Object	transTime	startTime	stopTime
:widget1	:hasColor	:red	2012Q3	2013Q1	2013Q2
:widget1	:hasColor	:green	2012Q3	2013Q2	2013Q3
				1	

Primary Key

Valid Time

- One physical schema for bi-temporal data.
- Use case is not covered by key-value stores.
 - Can we declaratively configure SPARQL DBs to handle this?
- Link attributes are very useful.

Unifying Architecture (example)

bigdata®

Bryan Thompson
SYSTAP, LLC
bryan@systap.com

http://www.systap.com/bigdata.htm

http://www.bigdata.com/blog